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Abstract— Cogent confabulation is a computation model that 
mimics the Hebbian learning, information storage, 
inter-relation of symbolic concepts, and the recall operations of 
the brain.  The model has been applied to cognitive processing of 
language, audio and visual signals. In this project, we focus on 
how to accelerate the computation underlie confabulation based 
sentence completion through software and hardware 
optimization. On the software implementation side, appropriate 
data structures can improve the performance of the software by 
more than 5,000X. On the hardware implementation side, the 
cogent confabulation algorithm is an ideal candidate for parallel 
processing and its performance can be significantly improved 
with the help of application specific, massively parallel 
computing platforms. However, as the complexity and 
parallelism of the hardware increases, cost also increases. 
Architectures with different performance-cost tradeoffs are 
analyzed and compared. Our analysis shows that although 
increasing the number of processors or the size of memories per 
processor can increase performance, the hardware cost and 
performance improvements do not always exhibit a linear 
relation. Hardware configuration options must be carefully 
evaluated in order to achieve good cost performance tradeoffs. 

I. INTRODUCTION 
To build a machine with human intelligence has always been a 

dream of computer scientists. During the last couple of decades, 
many cognitive architectures have been proposed. Some are based 
on explicit logic and expert rules, such as ACT-R [2] and SOAR. 
Others are connectionist approaches, among which the most 
dominant models use neural networks.  Other recent work integrates 
advances in neural science with artificial intelligence. In their book 
[3] Hawkins and Blakesleee advocate that the construction of 
cognitive architectures should be based on our present 
understanding of brain function. The Ersatz Brain project [4] is an 
example of neural science inspired cognitive architecture, which 
models the brain as a network of cortical columns. Another neural 
science inspired cognitive architecture is the cogent confabulation 
model proposed by Hecht-Nielsen [1]. It seeks to mimic the Hebbian 
learning, information storage, inter-relation of symbolic concepts, 
and recall operations of the brain.  

Most of the previous work on cognitive architectures focuses on 
cognitive science. They assume that the training speed or the 
response time of recall is not a concern. However, for any of the 
above mentioned systems to perform a cognitive application that has 
meaningful significance, a huge amount of data must be processed 
quickly. It is estimated that a computer with 100 million megabytes 
memory and 100 million MIPS may be able to match the human 
brain [5]. Currently, such a requirement can not be achieved in a 
uniprocessor system. Parallel processors with multi-core 

 
 

architecture and distributed processing capability are the only 
feasible solution [6].  

This paper presents our research which explores the potential for 
accelerating the computations that underlie cogent confabulation. 
Our approach includes both software and hardware optimization. 
First, we demonstrate the impact of different data structures on the 
performance of the algorithm. Our experiments show that speedups 
of more than 5,000X can be achieved by proper selection and tuning 
of data structures. Then we investigate the potential of accelerating 
the computations by parallel processing. Analysis shows that cogent 
confabulation is an ideal candidate for parallel processing. As a 
model that mimics the behavior of human brain, its computations 
can be partitioned into small tasks and distributed to different 
processing elements (PEs). During the analysis, we identified the 
smallest unit tasks, and carried out extensive software profiling to 
model and estimate computational complexity.  

Although increasing the number of PEs or the size of their 
memories can increase computational performance, it also increases 
system cost. Cost and the performance improvements do not always 
exhibit a linear relation, i.e. investing 1% more in hardware does not 
lead to a 1% increase in computational speed. The best 
implementation scheme should achieve a balance between cost and 
performance. Given the same cognitive computing model, many 
different hardware and software implementations are possible. Each 
has an associated performance (i.e processing delay) and cost (i.e. 
required resources, # gates, etc.). These implementations are 
considered design points in the cost-performance space. A design 
point is Pareto [7] if it has either less cost or lower delay than any 
other points in the design space. Obviously, only Pareto design 
points are relevant, and the main idea of architecture exploration is 
to generate design points and identify those that are Pareto.  

In this work, we evaluated various hardware configuration 
options for implementing the training and recall systems of a single 
sentence completion confabulation module, and we generated a set 
of design points with different performance-cost tradeoffs. The 
efficiency of different systems was measured and compared by 
computing cost-delay-products. 

Most of the previous work on performance optimization of 
cognitive architectures focuses on hardware or software 
implementation. For example, a hardware implementation of 
spiking neural networks is proposed in reference [8]. Reference [9] 
investigates the architecture design of a Brain-state-in-a-box model. 
The authors of [10] propose software based optimization of 
cognitive applications by exploiting their fault-tolerance and 
noise-tolerance properties. To the best of our knowledge, the present 
work is the first that studies both software and hardware 
optimization, and considers performance optimization and hardware 
cost at the same time.  

The remainder of this paper is organized as follows: Section II 
provides necessary background on cogent confabulation theory and 
the sentence completion example. Section III presents different data 
structures for software optimization and analyzes the computation 
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complexity and the potential of parallel processing. The 
cost-performance analysis of different architectures is presented in 
Section IV. Conclusions are given in Section V. 

II. BACKGROUND 
Cogent confabulation is an emerging theory proposed by 

Hecht-Nielsen. Based on the theory, the information processing of 
human cognition is carried out by thousands of separate 
thalamocortical modules. Each of these thalamocortical modules is a 
patch of cerebral cortex plus a uniquely paired zone of thalamus and 
is referred to as a lexicon or a feature attractor module. Different 
collections of neurons in the thalamocortical module represent 
different symbols. Knowledge is stored as the links between neurons 
and their strength. The cognitive information process consists of two 
steps: learning and recall. During the learning, the knowledge links 
are established and strengthened as symbols are co-activated. 
During recall, a neuron receives excitations from other activated 
neurons. A “winner-take-all” strategy takes place within each 
lexicon. Only the neurons (in a lexicon) that represent the winning 
symbol will be activated, and the winning neurons activate other 
neurons through knowledge links.  

Figure 1 shows an example of lexicons, symbols and knowledge 
links. The three columns in Figure 1 (a) represent three lexicons for 
the concept of shape, object and color with each box representing a 
neuron. Different combinations of neurons represent different 
symbols. For example, as Figure 1 (b) shows, the pink neurons in 
lexicon I represent a cylinder shape, the orange neurons in lexicon II 
represent a fire extinguisher, while the red neurons in lexicon III 
represent red color. During learning, if the information of a red 
cylinder shaped fire extinguisher is repeatedly provided then the 
links between these neurons will be strengthened. During recall, if 
the neurons representing the fire extinguisher are activated, then 
they will further excite the neurons that represent red color and 
cylinder shape. If the excitation levels of these neurons are higher 
than others, then the corresponding symbol will be activated. 

 
 
 
 
 
 
 
 
 
 

Figure 1 Example of lexicons, symbols and knowledge links 
A computation model for cogent confabulation is proposed in [1]. 

Based on this model, a lexicon is a collection of symbols. A 
knowledge base (KB) from lexicon A to B is a matrix with the row 
representing a source symbol in A and a column representing a target 
symbol in B. The ijth entry of the matrix represents the strength of 
the link between the source symbol si and the target symbol tj. It is 
quantified as the conditional probability P(si | tj). The knowledge 
bases are constructed during the learning procedure. During recall, 
the excitation level of all symbols in each lexicon is evaluated. Let l 
denote a lexicon, Tl denote the set of lexicons that have knowledge 
bases going into lexicon l, and Sk denote the set of symbols that 
belong to lexicon k. The excitation level of a symbol t in lexicon l 
can be calculated as: 

 ∑ ∑
∈ ∈

+=
lFk kS

BptsPsItI
s

0 ])/)|()[ln(()( , lSt ∈∀ .              (1) 

The function I(s) is the excitation level of the source symbol s. 
Due to the “winner-takes-all” policy, the value of I(s) is either “1” or 

“0”. The parameter p0 is the smallest meaningful value of P(si | tj). 
The parameter B is a positive global constant called the bandgap. It 
is introduced to ensure that a symbol receiving inputs from M active 
knowledge links will always have a higher excitation level than a 
symbol receiving (M-1) active knowledge links, regardless of the 
strength of the links. 

Based on the example provided in [1], prototype confabulation 
based single sentence completion software has recently been 
developed internally at AFRL/RITC [11]. A sentence is represented 
using 40 lexicons that are arranged in 2 levels. The ith lexicon on 
level 1 represents the word (or punctuation) in the ith location of a 
sentence. There are 20 lexicons in level 1, and the words or 
punctuations beyond the first 20 are discarded. The ith lexicon on 
level 2 represents the phrase (consisting of one or more words) that 
begins in the ith location of a sentence. The connections of 
knowledge bases are “causal”. Within each level, each lexicon only 
establishes knowledge bases with all lexicons to the right. The 
lexicons in different levels are also connected with knowledge 
bases. The ith lexicon in level 1 is connected to the jth lexicon in 
level 2 where j ≤ i while the jth lexicon in level 2 is connected to the 
ith lexicon in level 1 where i ≥ j. Figure 2 shows the lexicons and the 
knowledge bases for the sentence completion problem.  

 
 
 
 
 
 
 
 
 

Figure 2 Confabulation based sentence completion 
Overall, there are 800 knowledge bases in the system. The 

contents of the knowledge bases are learned by reading novels and 
scientific papers that are stored on hard disk. The ultimate size of the 
knowledge bases depends on the extent of training. Let N denote the 
total number of unique words, phrases and punctuations in the 
training corpus. Each lexicon is a collection of N symbols and each 
knowledge base is potentially an N×N matrix. A medium sized 
training file with 173,000 words generates about 60,000 symbols. 
Extensive software profiling has been performed on this example 
training file, which will be referred as the benchmark. 

During learning, each sentence in the training corpus is read in 
turn.  As each sentence is read, each word/phrase is converted into a 
unique ID based on its location in a master lexicon or dictionary. 
Each entry in the knowledge base matrix is associated with two 
symbols. Its row index corresponds to the ID of the source symbol 
while its column index corresponds to the ID of the target symbol. 
The knowledge base entry is incremented if the source and target 
symbols appear in the sentence. At the end of the training, each entry 
in a knowledge base gives the number of co-occurrences of the 
corresponding source and target symbols.  

After training, the conditional probability of the source and target 

symbols P(s | t) is calculated as: 
∑

=
i tikb

tskbtsP
]][[

]][[)|( , where kb[s][t] 

represents the content of knowledge base matrix at row s and column 
t. 

During the recall, given one or more initial words the software is 
able to generate meaningful sentences that may or may not be in the 
training text. The starter words are first assigned to the 
corresponding lexicons, and the excitation level of each symbol in 
each lexicon is evaluated using equation (1). The symbols with the 
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highest excitation are stored in the activation list. The procedure 
repeats if the new activation list is different than the previous 
activation list.  

III. SOFTWARE OPTIMIZATION 
A. Improving the data structure for the training function 

A knowledge base is essentially an N×N matrix, where N is the 
total number of possible words/phrases in the training file and it is 
about 60,000 for a medium sized training file. Storing all knowledge 
bases in memory without compression will be impossible. Our 
experiments show that a knowledge base is a sparse matrix, with 
about 500 ~ 9,000 nonempty rows and less than 5,000 non-zero 
entries in those non-empty rows. Therefore, only 1.25% of a 
knowledge base is non-zero. To compress the knowledge base, we 
store only the non-zero entries. We optimized the data structure of 
knowledge bases in a progressive way. Figure 3 shows the four data 
structures that have been evaluated. 

(a) List of arrays. List of arrays data structure is first used to 
represent each knowledge base matrix. It consists of a source array 
and a set of target arrays. Each entry in the source array corresponds 
to a non-empty row in the matrix. It points to a target array which 
stores the non-zero entries in that row. Figure 3 (a) shows the list of 
array representation of a knowledge base (KB) matrix with 4 
non-empty rows. 

(b) Link-list. The list of arrays is not efficient for data insertion 
and deletion. Each data insertion or deletion requires a memory 
movement. We replace an array with a link-list. The resulting data 
structure has one source link-list and a set of target link-lists. Figure 
3 (b) shows the link-list representation of the previous example. 
Compared with the list of arrays based implementation, the link-list 
based data structure improves training speed by 200X times.  

(c) Tree. To locate a knowledge base entry during the training, we 
need to first find the corresponding row based on the source symbol 
ID, and then find the corresponding column based on the target 
symbol ID. The link-list based data structure is not efficient for data 
search. We further improve the data structure by replacing each 
link-list with a binary tree. The resulting data structure has one 
source tree and a set of target trees for each knowledge base matrix. 
An example of tree based representation is given in Figure 3 (c). 
Compared with the link-list implementation, the tree based data 
structure improves the training speed by 4X times. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Data structures for KB training 
 (d) Merged trees. Close observation of Figure 2 shows that 

several knowledge bases share the same source lexicon. Therefore, 
their source tree can be merged to reduce storage and search time. 
The resulting data structure has one source tree for each lexicon and 
one target tree for each non-empty row in each knowledge base 
matrix. Each source node points to an array of knowledge bases that 

originate from the corresponding lexicon.  Each entry of that array 
points to a target tree. Figure 3 (d) shows the merged tree data 
structure. Compared with the tree based data structure, the merged 
tree based data structure provides a 7X speed up for training.  

All of the above mentioned performance improvements were 
obtained using our benchmark training file. Our experiments show 
that the merged tree is the best data structure for training. 

B. Software profiling 
Software profiling was performed to determine the number and 

size of the source and target trees (which set memory requirements), 
and to measure the training speed of the sentence completion system 
using the benchmark training file with 173,000 words. Table 1 
summarizes the software profiling results. Figure 4 (a) and (b) shows 
the probability distribution of the size of the source trees and target 
trees, respectively. 

Table 1 Summary of tree size 
 #of 

trees 
Average 
size 

Max. size Min. size 

Source 40 4026 nodes 8943 nodes 510 nodes 
Target 2.78 × 

106 
3 nodes 4216 nodes 1 nodes 

  
 
 
 
 
 
 
 
 
 
 
Figure 4 Probability distribution of source and target trees 

C. Improving data structure for the recall function 

During the recall, a partial sentence is input to the system, the 
excitation levels of all symbols in all lexicons are calculated, and the 
symbols with the maximum excitations are activated.  

 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

Figure 5 A simplified example of recall 
Figure 5 shows a simplified example of the recall. Three lexicons 

(0, 1, and 2) and two knowledge bases (KB2 and KB20) are 
considered. Each lexicon is a collection of 5 symbols and the 
knowledge bases are 5×5 matrices. The knowledge bases store the 
values BptsP +)/)|(ln( 0  with B equal to 100. The contents of 
KB2 and KB20 are given in Figure 5 (b). Initially, the first symbol in 
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lexicon 0 and the second symbol in lexicon 1 are activated. 
Therefore, the excitation levels of the 5 symbols in lexicon 2 are 
calculated as the summation of the first row in KB2 and the second 
row in KB20. The result is a vector called Excitation Level (EL) and 
in this example, EL is [101, 204, 0, 121, 117]. Assume that later the 
first symbol of lexicon 0 is deactivated, and the third symbol is 
activated. The two vectors in the first and second rows of KB2 and 
KB20 are referred as Previous Excitation vectors (P_Ei) while the 
vector in the third row of KB2 is referred as the New Excitation 
vector (N_Ei). The subscript indicates the index of the knowledge 
base. The EL vector should be updated as EL - P_E2 + N_E2. 

The example shows that, for a given activated source symbol, all 
entries in the corresponding row of a knowledge base must be 
visited. However, a tree is not efficient for data traversal. The 
knowledge base matrices are constant during recall, i.e. no data 
insertion or deletion is performed. Therefore, it is more efficient to 
replace each target tree in the merged tree data structure with a target 
array. We refer this data structure as merged tree with target array. 
An example of a knowledge base that is represented in this data 
structure is given in Figure 6. 

 
 
 
 
 
 
 

Figure 6 Data structures for Recall 
The previous analysis shows that it will be more efficient if 

training and recall are implemented using different data structures. 
This would require a special process to convert the knowledge base 
representation after training. The drawback of doing this is that two 
representations of the knowledge bases must be maintained at the 
same time, and that new knowledge cannot be used as soon as it is 
learned, but only after a process updates the recall knowledge bases.  
D. software analysis 
i) Training complexity 

Figure 7 shows a flow diagram of the training function using the 
merged tree data structure. It is a repeated procedure consisting of 
the following steps. At the beginning, a sentence is read in. All the 
words and phrases in the sentence are converted into their unique ID 
and assigned to the corresponding lexicons. For each lexicon, the 
associated source tree is searched to locate the source symbol. 
Overall, there are 40 lexicons and hence up to 40 source trees will be 
searched, depending on the length of the sentence. After that, based 
on the target symbol ID, all target trees that were pointed to by the 
source nodes are searched and the value of the corresponding 
knowledge base entry will be incremented. Because there are 800 
knowledge bases, up to 800 target trees will be searched. If any of 
the tree searches returns an empty pointer (i.e. the symbol is not 
found), a node is created and appended to the end of the tree. This 
procedure repeats until the entire training file has been processed. 
(This description is simplified, as the process actually involves 
counts bases on various source and destination word positions and 
phrase lengths). The computation complexity is determined by the 
size of source and target trees. Assume that all trees are balanced.  
Let avg_ns and avg_nt denote the average size of source tree and 
target tree respectively. During a tree search, 3 operations are 
required to access a tree node: (1) read the value of the node, (2) 
compare the value, and (3) read the address of child node. Therefore, 
each training iteration has an average of 

3)_log(8003)_log(40 ⋅⋅+⋅⋅ ts navgnavg  operations. Given a 
conventional sequential processor, one operation takes at least one 

clock cycle. For our benchmark training file, where avg_ns = 4026 
and avg_nt = 3, the sequential processing of one iteration in the 
training function takes 5240 clock cycles. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Flow diagram of the training function 
ii) Recall complexity 

Figure 8 shows the flow diagram of the recall. In the first step, if a 
new symbol is activated in lexicon l, then its location i is found by 
searching the source array associated with lexicon l. Let KBll’ denote 
a knowledge base that connects the lexicon l to lexicon l’. In the 
second step, the ith row of each KBll’ is copied to the new excitation 
vector (N_Ell’). In the last step, all the new excitation vectors that 
have been updated during this iteration are added and all the 
corresponding previous excitation vectors are subtracted to calculate 
the new EL. Then the symbol with the maximum EL is found.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 Flow diagram of the recall function 
Assume that half of the knowledge bases have a new source 

symbol being activated. The first step consists of 20 source tree 
searches which require 3)_log(20 ⋅⋅ snavg  operations. In average, 
these 20 lexicons connect to 400 knowledge bases. Hence, 400 new 
excitation vectors will be copied in the second step. This 
corresponds to 400 * avg_nt operations. Based on our previous 
assumption, about half of the knowledge bases that go into a lexicon 
update their excitation. Therefore, in step 3, about 400 N_E vectors 
must be added to and the same number of P_E vectors must be 
subtracted from the EL. This corresponds to 2_400 ⋅⋅ tnavg  
operations. Further more, for each of the 40 EL vectors, the 
maximum value must be found, which takes 2/_40 snavg⋅  
operations. Overall, one recall iteration consists of 

sts navgnavgnavg _20_1200)_log(60 ⋅+⋅+⋅  operations. For the 
benchmark training file where avg_nt=3 and avg_ns=4026, it takes 
84,838 cycles to process one recall iteration sequentially.  
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E. Parallel processing in cogent confabulation 
As a computation model that is inspired by the neurobiological 

architectures of the human neocortex, cogent confabulation is an 
ideal candidate for parallel processing.  

Before presenting the parallel model of cogent confabulation, we 
introduce the concept of an atomic task. An atomic task is a 
sequence of operations which must be applied to the same storage 
elements. Therefore, these operations cannot be parallelized. Two 
atomic tasks communicate with each other only at the beginning or 
end of a process. An atomic task is triggered by another atomic task 
and it may further trigger other atomic tasks. 

Based on the definition, the source tree search (S-search) 
processes and the target tree search (T-search) processes are 2 types 
of atomic tasks in the training function. The T-search processes are 
triggered by the completion of S-search process. The recall function 
consists of 3 types of atomic tasks. They are: source tree search, N_E 
vector generation, and EL vectors calculation.  

Atomic tasks of the same type are independent of each other and 
can be made parallel. For example, during training, up to 40 
S-search tasks or 800 T-search tasks can run, simultaneously. The 
parallel nature of the model can be explored for performance 
enhancement if provided with appropriate computing hardware.  

IV. ARCHITECTURE EXPLORATION 
Computation hardware that is able to provide the maximum 

achievable performance for cogent confabulation should have large 
number of processing elements (PEs) so that all atomic tasks that 
belong to the same type can run in parallel. Special hardware such as 
the content addressable memory (CAM) can also be used to improve 
the performance. However, multiple PEs and special hardware 
increase the cost of the system. Cost and performance often exhibit 
non-linear relationships. Careful decisions must be made to in order 
to find the best tradeoff between cost and performance. In this 
section, we provide a cost-performance analysis of various hardware 
architectures designed for confabulation based single sentence 
completion. 
A. Hardware acceleration of the training function 
i) Hardware requirements for best achievable performance 

The best performance of the training function can be achieved if 
all atomic tasks that belong to the same type can be made parallel 
and if each atomic task can be finished in minimum time. The 
minimum time of S-search and T-search is 2 clock cycles, given the 
condition that the PEs have large enough CAMs so that the tree 
search can be finished in 1 clock cycle. For an S-search task, the 
second cycle is used to trigger the T-search task, while for a 
T-search task the second cycle is used to update the knowledge base 
entries. Since the S-search task and its succeeding T-search tasks 
may very well be mapped onto different PEs, communication 
latency to pass the triggering event also needs to be considered. 
However, this can be compensated a little bit by latency hiding 
techniques such as double buffering. For the best possible 
performance, we assume that inter-PE communication takes 1 clock 
cycle. Overall, the best achievable performance for the training 
function is 2+1+2 = 5 clock cycles.  

Architecture (1)  Different architectures are able to deliver the 
best achievable performance. Among them, the most cost efficient 
system has 840 PEs so that the 40 S-search tasks and 800 T-search 
tasks can be made parallel. Target trees that belong to the same KB 
will not be accessed in the same iteration and will be stored on the 
same PE.  

Each PE has a CAM and a RAM. An n×m CAM is able to store n 
words whose width is m bits. When presented with an m bit input, 
the CAM gives an n bit output. A “1” at the ith location of the output 
indicates that the ith data in the CAM matches the input data. Figure 

9 (a) gives an example of a 5×9 bit CAM. When the input is 
“111111110”, which matches the contents in location 1 and 4, the 
output of the CAM is “10010”. 

 
 
 
 
 
 
 
 
 
 
 

Figure 9 CAM and TLB 
When all target trees that belong to the same KB matrix are mixed 

together and stored in the same CAM, if a matching location is found, 
a TLB (Table Lookup Buffer) is used to determine whether this 
location belongs to the target tree of interest. Each entry of the TLB 
corresponds to a target tree. Each bit of a TLB entry corresponds to a 
location in the CAM. If the jth bit of the ith TLB entry is “1”, then 
the jth CAM location stores a symbol that belongs to the ith target 
tree. For example, Figure 9 (b) shows the CAM and the TLB of a 
knowledge base that has 4 target trees (i.e. the knowledge base 
matrix has 4 non-empty rows.) To search whether symbol 
“111111110” is in target tree 3, the symbol ID goes to the CAM 
while the target tree ID goes to the TLB. Since location 1 and 4 in the 
CAM match the input, the CAM output is “10010”. The address 3 of 
the TLB stores the value “00010”, which indicates that target tree 3 
has only one symbol and it is stored in CAM location 3. If a bit wise 
AND operation on the CAM output and TLB output returns a 
non-zero result, then the symbol is in the target tree. The location of 
the “1” in the result gives the address of the target symbol. The 
length and the width of the TLB are determined by the maximum 
number of target trees and the length of the CAM respectively. 

Besides CAM and TLB, a RAM is used to store the pointers or the 
values of KB entries. Each data entry in the CAM has a 
corresponding data entry in the RAM. 

Using the source and target tree statistics from the benchmark 
training file, the hardware cost of architecture (1) is estimated and 
provided in Table 2. Compared to the sequential process, this 
architecture provides about a 1048X speedup. 

Table 2 Hardware requirement of Architecture (1) 
#PEs CAM per PE RAM per PE TLB per PE 

Length Width Length Width Length Width 
840 38K 18bit 38K 32 bit 9K 38 Kb 

 
ii) Performance cost tradeoffs 

Architecture (1) in the previous section is very expensive because 
it requires huge number of PEs and each PE must have large amount 
of memory. In this section we consider lowering the hardware cost 
by removing certain components, and evaluate the effect on 
performance. The resulting hardware configurations are not able to 
provide the best achievable performance; however, they are less 
expensive.  

Architecture (2) For the same storage capacity, a CAM is about 
4~5 times larger than a RAM. Therefore, our first option is to reduce 
the size of the CAM. The system has 840 PEs and a smaller CAM for 
each PE. The CAM is only large enough to store one source tree. 
The target trees are stored in the RAM.  

Given such system, an S-search task still takes 2 cycles. The 
system cannot proceed to the next iteration until all of the 800 
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T-search tasks finish. Therefore, the performance is bounded by the 
slowest one among the 800 tasks. This is determined by the size of 
the largest tree among 800 randomly selected target trees. Assuming 
that special hardware is available to pre-fetch the address of the next 
node during tree search, it takes 2 cycles to visit each node. The 
average time to finish all of the 800 T-search tasks is 

max800avg _log2 2⋅ cycles, where avg_max800 is the expected 
size of the largest target tree among the 800 random samples.  

 
 
 
 
 
 
 

Figure 10 Probability distribution of avg_max800 
As an example, Figure 10 shows the probability distribution of 

the size of the largest tree among 800 random samples generated 
from the benchmark training file. Although the majority of target 
trees are very small, among 800 random samples, the probability 
that the largest tree has less than 200 nodes is less than 0.1. The 
expected size of the largest tree among 800 random samples is 563. 
The average time to finish all of the 800 T-search tasks is 

18563log2 2 =⋅ cycles. Overall, one training iteration takes 21 
cycles. Compared to the sequential processing which takes 5240 
cycles per iteration, the speed up is about 250X. 

Table 3 Hardware cost and performance of architecture (2) 

 
The length of the CAM is determined by the largest source tree. 

Each entry in the CAM must have a corresponding word in the RAM. 
Besides this, the RAM is also used to store all the target trees. Each 
tree node is associated with 4 data. They are: {symbol ID, address of 
the left child, address of the right child, entry in knowledge base 
matrix}. Therefore, the length of the RAM must be greater than 
max(max_ns, 4⋅max_nt), where max_ns is the size of the largest 
source tree and max_nt is the maximum number of target nodes in 
one KB. Finally, because the CAM is not shared among different 
source trees or target trees, the TLB is not needed. The second row 
in Table 3 summarizes the hardware requirements and performance 
for architecture (2). In the third row of Table 3, we replace the 
variables such as avg_max800, max_ns, and max_nt with the data 
that are collected from the benchmark training file and give the 
estimation of the performance and hardware cost. 

Architecture (3) We can further reduce the size of the CAM. 
When the length of the CAM is less than max_ns, some source trees 
cannot be fit into the CAM entirely. The source tree symbols that 
enter the system earlier will be stored in the CAM. Software 
profiling shows that the symbols that enter the system earlier have 
higher probabilities of being visited in the future. Figure 11 shows 
the relation between the entering order of a symbol and the number 
of times it has been accessed. Each blue dot in the plot represents a 
symbol in the source trees. A symbol that enters the system earlier 
has a lower entering order. The plot shows that symbols with lower 
entering order will be accessed more frequently. The symbol access 

frequency is almost inversely proportional to its entering order. The 
relation can be approximated by the function Access_Times = 
1600/Enter_Order, which is the magenta curve in the plot. The 
observation indicates that the CAM hit ratio will be greater than the 
CAM storage ratio.  

 
Figure 11 The nodes that enter the system earlier have higher 

possibility to be visited 
If there is a CAM hit (i.e. the target symbol is located in the 

CAM), then the processing time of the S-search task is 2 cycles. 
Otherwise, the rest of the source trees must be searched and the 
system performance is bounded by the search time of the largest 
source tree. If all symbols have an equal probability of being visited, 
the expected  processing time of the S-search task can be calculated 
as                                                

)(max_log)max_/1(2max_/2 21 XnnXnXT sss −−+= , where 
X is the size of the CAM. Similar to previous discussions, we assume 
that special hardware is available to pre-fetch the address of the next 
node, so that each node access takes 2 cycles.  The expected time for 
T-search tasks is max800avg _log2 2⋅  cycles. Figure 12 (a) gives 
the relation between processing time and the CAM capacity of a 
system that is capable of processing the benchmark training file, for 
which max_ns = 8943 and avg_max800 = 563.  

 
 
 
 
 
 
 
 
 
 
 

Figure 12 Performance estimation 
The above analysis is a pessimistic estimation of the system 

performance. Since the CAM hit ratio is higher than the CAM 
storage ratio, the actual probability that a symbol is located in the 
CAM is greater than snX max_/ . Assuming that the relation 
between the number of times a symbol is accessed and its entering 
order follows the function y=1600/x, and using the profiled statistics, 
the relation between the process time and the size of CAM is derived 
and presented in Figure 12 (b). As we can see, increasing the CAM 
from 1 to 1500 entries can reduce the processing time from 31 to 24. 
After that the latency reduction slows down. Since the rest of the 
source tree must the stored in the RAM, the length of the RAM must 
be greater than max(max_ns + 3×(max_ns – X), 4×max_nt). 

Architecture (4) Reducing the number of PEs can also lower the 
system cost. Assume that the system has P processing elements. 
When P < 840, there will be PEs shared by several atomic tasks. 
Depending on the value of P, the resource sharing can be 
categorized into 3 types. 
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(6a) 840800 <≤ P : Some S-search tasks will be mapped to the 
same PE as the T-search tasks. Such resource sharing will not impact 
the performance; however, this requires that each PE be equipped 
with more memory. Let X denote the size of CAM for each PE, the 
size of the local RAM of a PE is calculated as: max_ns + 3×(max_ns 
– X)+4×max_nt. 

(6b) 80040 <≤ P : T-search tasks that are not mutually 
exclusive are mapped to the same PE. Therefore, the latency of step 
2 of the training function increases.  

The average target tree sizes are different for different KBs. 
Figure 13 shows the profiled information obtained from the 
benchmark training file. It shows that the KBs that go from level 1 
lexicons to level 2 lexicons usually have larger target trees, while the 
KBs going from level 2 lexicons to level 1 lexicons usually have 
smaller target trees. In order to maintain a balanced workload among 
all PEs, the summation of the average tree size of the KBs assigned 
to the same PE must be approximately equal.  

 
 
 

 
 
 
 
 
 

Figure 13 Average size of the target trees for different KBs  
(6c) 40<P : Different Type I tasks must share the same PE. 

Figure 14 gives the profiled information for the size of 40 source 
trees obtained from the benchmark training file. It shows that the 
source trees associated with the level 1 lexicons are relatively 
smaller than the source trees associated with the level 2 lexicons. 
Again the mapping between source trees and PEs must be designed 
carefully so that the workloads for different PEs are balanced. 

 
 
 
 
 
 
 
 

Figure 14 The size of 40 source trees. 
Using the benchmark training file as an example, we vary the 

number of PEs as well as the size of CAM per PE and obtained a set 
of 73 design points in the cost and performance space. During the 
analysis, we assumed that the each processor has 1 unit area (i.e 1 
unit cost), which is also the area of a 1MB RAM. The CAM is 4 
times larger than a RAM with the same capacity. Note that changing 
the relative size of PE, RAM and CAM will change the results of the 
following analysis. 

  
 
 
 
 
 
 
 
 
 
Figure 15 Cost-performance analysis for the training system.  

Figure 15 (a) shows design points for 73 different hardware 
configurations in the performance cost space. The X axis represents 
the hardware cost and the Y axis represents the speedup compared 
with the sequential process. As we can see, varying the number of 
PEs gives a larger impact on the cost performance trade off than 
merely varying the CAM size. A hardware system with more PEs 
but a smaller CAM for each PE has lower performance and higher 
cost than a hardware system with less PEs but a larger CAM for each 
PE. The cost-performance point for the two extreme hardware 
configurations, i.e. single PE without CAM and 840 PEs with 
unlimited CAM (i.e. Architecture (1) ) are not shown in the plot. The 
former has 35 units of hardware cost and 1X speedup while the latter 
has 37,098 units of hardware cost and 1048X speedup.  

Figure 15 (b) shows the delay-cost-product (DCP) for different 
configurations. A lower DCP indicates more efficient hardware. As 
we can see, increasing the CAM size improves the hardware 
efficiency. Again, the DCP of the two extreme cases are not shown 
in the figure. The DCP of a single PE sequential processor is 
185,493 while the DCP of the optimal performance hardware is 
184,679. It is interesting to note that the DCP of these two extreme 
cases are very close and they are much higher than the DCPs of the 
other configurations. 

B. Hardware acceleration of the recall function 
i) Hardware requirements for best achievable performance 

For a lexicon i, let F(i) denote the set of lexicons that connect to 
knowledge bases coming out from i and T(i) denote the set of 
lexicons that connect to knowledge bases going into i. The recall 
system has 40 PEs. Each PE is associated with a lexicon i. It 
performs three major tasks: (1) receives newly excited source 
symbols from PEs associated with lexicons j, j∈T(i), (2) calculates 
the EL vector and finds the symbol with highest excitation, and (3) 
sends the symbol with highest excitation to other PEs associated 
with lexicon k, where k∈F(i), if the symbol is different from the 
previous one. To calculate the EL vector, the PE performs the 
following 3 steps: (1) reads the N_E/P_E vectors, (2) calculates the 
EL vectors, and (3) searches EL vector to find the highest excited 
symbol.  

To achieve the highest performance, special hardware is used to 
pipeline the operations. Figure 16 (a) shows the hardware block 
diagram of a PE. The hardware has 2 memory blocks: KB_RAM and 
P_E_array.  

The KB_RAM stores all the knowledge bases that go into this 
lexicon. Each storage element in the RAM consists of two fields, the 
value of the knowledge base element and the corresponding column 
index. To achieve the highest performance, each row of the 
KB_RAM stores one non-empty row of the KB. When a row is read 
out, based on the column ID, the KB elements are copied into the 
corresponding locations in the N_E vector. Figure 16 (b) shows how 
data is stored in the KB_RAM and how it is copied into the N_E 
vector. A KB_RAM has ∑ ∈ )( _iTj jiKBrownum  rows, where 

jiKBrownum _  represents the number of non-empty rows in the 

knowledge base that goes from j to i. Each row of the KB_RAM has 
)(max )( jiKBiTj nmax_row_le∈  elements, where 

jiKBnmax_row_le  is the length of the longest non-empty row in 

the knowledge base that goes from j to i, and each element has 3 
bytes. Each row in the P_E_array is associated with a knowledge 
base KBji, where j∈T(i), and it stores the previous excitation vector 
(P_E) of the corresponding knowledge base.  

Each PE has an input array that stores the newly excited source 
symbol from other lexicons. Each entry in the input array has two 
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fields: the knowledge ID (KB ID) and the symbol ID. Based on this 
information the corresponding row in the KB_RAM is read out and 
copied into the N_E. Address translation is necessary. However, 
since the size of the knowledge bases are fixed, the address 
translation can be implemented using combinational circuits. Based 
on the KB ID, the P_E vector is read out from the P_E_array. Vector 
addition and subtraction is performed on EL, N_E and P_E and the 
result is written back to EL. The addition and subtraction is chained 
and can be completed in one clock cycle. The two operations, i.e 
P_E/N_E read and EL calculation are pipelined. The throughput of 
the pipeline is 1 vector per clock cycle.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 Hardware block diagram of PE for recall function  
To find the maximum value of the EL in short time, a comparator 

tree is used. Figure 16 (c) shows the comparator tree. The tree has 
max_row2log  levels, where max_row is the maximum number of 

non-empty rows in all knowledge bases. There are max_row-1 
comparison operations in the tree. It takes 
⎡ ⎤clkcomp Ttrow×max_log2  cycles to complete the search, where 
Tclk is the clock period and tcomp is the delay of a comparator. Because 
the comparison operations in different levels are mutually exclusive, 
they can share the same hardware comparator. Therefore, each PE 
has max_row/2 comparators. 

Assume that the inter-PE communication takes only 1 clock 
cycle. Because in average there are 20 KBs that will have an updated 
source symbol, to read out N_E/P_E and calculate EL takes 20+1 
cycles. The last cycle is to flush out the pipeline. The time to find the 
maximum value in EL is ⎡ ⎤clkcomp Ttrow×max_log2  cycles. 
Overall, one recall iteration takes 

⎡ ⎤clkcomp Ttrow×+ max_log22 2  cycles. 
When the PEs are homogeneous, the size of the RAM and 

P_E_array should be set to consider the worst case scenario. For a 
recall system that is based on the knowledge learned from the 
benchmark training file, the minimum size of the KB_RAM is 
217,000×27,000=5.8G byte and the minimum size of the P_E_array 
is 40×9K=360K byte. It requires 4,500 8-bit comparators and 18,000 
8-bit adders. Assume that the Tcomp is 1ns while the Tclk is 2ns, with 
the above mentioned PE configuration, each iteration takes 29 
cycles. Compared to the sequential implementation, the speedup is 
2924X. 

ii) Cost performance tradeoff 
The above configuration is very expensive because the width of 

the KB_RAM is bounded by the longest row in KB and each PE 
must be equipped with 5.8GB memory. We reduce the width of 
KB_RAM to W bytes, where 

)(max3 )( jiKBiTj nmax_row_leW ∈×< . For those KB rows 

with more than W/3 non-zero values, we wrap them around and store 
them in multiple RAM entries. For example, in Figure 16 (d), row 3 
is wrapped around and occupies 2 RAM entries. This reduces the 
wasted storage space, however at a cost of increased latency. 
Multiple reads are required to fetch some of the long rows.  

 
 
 
 
 
 
 
 
 
Figure 17 Reducing the width of KB_RAM increases the N_E 

vector read time  
Using the benchmark training file as an example, Figure 17 shows 

the probability distribution of the number of cycles needed to read 
an N_E vector when the width of the KB_RAM is 15B, 6B and 3B. It 
shows that 85% of the N_E reads take only 1 cycle when the width of 
the KB_RAM is 15 bytes. When the width is 3 bytes (i.e. each row 
only stores one KB element), only 58% of the N_E reads take 1 
cycle. Based on this information, we can derive the average read 
time of the N_E vector. When the width of the KB_RAM is 15 bytes 
the average time to read out an N_E vector is 1.2 cycles. If the width 
reduces to 6 bytes then the time increases to 2.3 cycles. If the width 
of the KB_RAM is 3 bytes then the average read takes 3.3 cycles. 
The performance of system is bounded by the latency of the PE that 
represents the lexicon with the largest number of input knowledge 
bases. The slowest PE must read and process 20 N_E vectors. Based 
on the law of large numbers, the expected processing time can be 
calculated as 20×cycleavg, where cycleavg is the average number of 
cycles to read an N_E vector. Let lineavg denote the average number 
of RAM lines occupied by an N_E vector, avgavg cycleline = . 

The length of the KB_RAM can be calculated 
as ∑ ∈× )( )(#iTj jiKBavg rowsline , where jiKBrows#  represents the 

number of non-empty rows in the knowledge base from lexicon j to 
lexicon i. 

Reducing the width of the KB_RAM to W bytes also reduces the 
number of required adders. Since we only need enough adders to 
process the data that are read out from the memory, only 2/3*W 
adders are needed.   

To reduce the hardware cost, we can also decrease the number of 
comparators. Assume that there are V comparators in each PE, the 
latency of the comparison is approximately estimated 

as )12(7 2logmax_2log −+ − Vrow . 
Using the information obtained from the benchmark training file, 

we can analyze cost-performance tradeoffs for the recall system. 
Assume that each 1MB RAM has 1 unit area, which is also the area 
of 100 8-bit adders or comparators. By varying the value of V (i.e. 
the number of comparators) from 4500 to 1 and varying the value of 
W (i.e. the capacity of the KB_RAM) we obtain a set of design 
points. Figure 18  (a) shows where the design points fall in the 
performance cost space. The X axis gives the hardware cost and the 
Y axis gives the speed up over sequential processing. The cost is 

(a) Hardware block diagram 
 

<=
<=

<=
<=

<=
<=

<=

<=
<=

<=
<=

<=
<=

<=

(c) Comparator 
(d)  Reducing the 

width of KB_RAM 

Prob(#mem reads < X)

Number of Memory Reads

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Width =3B
Width=6B
Width=15B

Prob(#mem reads < X)

Number of Memory Reads

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

Width =3B
Width=6B
Width=15B

(b) Data storage in 
RAM 

New excitation 
symbol

Triggering event

KB_RAM KB_RAM 
KB ID

N_E

A
dd

re
ss

 
Tr

an
sl

at
io

n

A
dd

re
ss

 
Tr

an
sl

at
io

n

+

-

MAX

EL

<=

P_EKB ID

P_E_array

s j
s i

s1
K

B
 j

K
B

 i
K

B
 1 Symbol ID

old excitation 
symbol

New excitation 
symbol

Triggering event

KB_RAM KB_RAM 
KB ID

N_E

A
dd

re
ss

 
Tr

an
sl

at
io

n

A
dd

re
ss

 
Tr

an
sl

at
io

n

+

-

MAX

EL

<=

P_EKB ID

P_E_array

s j
s i

s1
K

B
 j

K
B

 i
K

B
 1 Symbol ID

old excitation 
symbol

KB_RAM

KB1

KB2

kb valuekb value Col IDCol ID

1B 2B

N_E

KB_RAM

KB1

KB2

kb valuekb value Col IDCol ID

1B 2B

N_E

KB_RAM

KB1

KB2

row 1
row 2

row 3

KB_RAM

KB1

KB2

row 1
row 2

row 3



 
 

 

measured as the total area of the hardware. The results show that for 
the same hardware cost, a narrower KB_RAM is faster. Figure 18 
(b) shows the delay-cost-product of the different hardware 
configurations. For the same cost, a narrower KB_RAM has higher 
efficiency. A system with too many comparators or too few 
comparators does not provide the best efficiency. For W=15B~6B, a 
system with about 60 comparators is the most efficient in terms of 
the delay and the cost. 

   
 
 
 
 
 
 
 
 
 

Figure 18 Cost performance tradeoff for the recall system. 
 
V. CONCLUSIONS AND FUTURE WORK 

In this work we present our research on accelerating 
confabulation based single sentence completion. Three topics have 
been covered. They are (1) software optimization, (2) software 
analysis and (3) architecture exploration. Our analysis shows that 
the use of appropriate data structures can improve the performance 
of the software by more than 5000X, and that the cogent 
confabulation algorithm is an ideal candidate for parallel processing. 
It also shows that although increasing the number of PEs or the size 
of memories can increase the performance of training and recall, the 
relation between hardware cost and performance associated with 
these variations are not always linear. The details of hardware 
configuration must be carefully considered to achieve good cost 
performance tradeoffs. We suggest that this work can be extended to 
more complex implementations of confabulation systems.    
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